Mayl618

Team Roles
Problem Statement
Proposed Design
R GUIN MBS . . e

Backend Functional Requirements.o

Frontend Functional Requirements............cooiiiiii i

Frontend Nonfunctional Requirements
Front End Specifications
BaCk ENd AP ..o
CoNCePt SKELCN. ...
Interface Description
Testing Specifications
Test Plan

https://docs.google.com/document/d/1VoFYRTX8bHSBRd2BM-cO7czojPUCulBNDaIu-dxjoV8/edit#heading=h.qo78csuxi8w6

Team Toles

Andrew Bowler - Webmaster

Alberto Gomez-Estrada - Communications
Michael Sgroi - Key Concept Handler
Richard White - Key Concept Handler
Taylor Welter - Team Lead

O O O O O

Problem Statement

Graphs are an elegant way to illustrate the extensive web of connections between
many points of data. As the data set becomes larger and more complex, it becomes
more important to be able to visualize specific instances of various relationships. The
goal of this project is to build a generic graph visualization, analysis, and search web
application.

Proposed Design

The project shall be set up as a client-server model. The client (aka frontend) shall be a
web application written in HTML and JavaScript with various libraries, with Angular as
the application’s front-end framework. It shall be responsible for displaying the graphs
and receiving user input. The server (aka the backend) shall be written in D. It shall
first be responsible for accepting newly generated graphs from various services via
rest. It shall also be responsible for serving up the graph to the frontend. It shall
additionally be responsible for performing all the graph calculations and sending the
results to the client. Communication between the server and client shall use
websockets sending json messages.

Requiremenis

Backend Functional Requirements
O The product shall allow for the upload of arbitrary graph files for analysis via
REST
O The product shall index incoming information associated with nodes and edges

@)
@)

The product shall allow for the searching of nodes by name
The product shall process the graph to determine:

m Depth

B Breadth

m Interconnectedness

m Impact

Frontend Functional Requirements

@)

@)

The product shall be able to visualize the graph
m The graph's visualization shall clearly distinguish different nodes and
their connections
B The visualization shall clearly distinguish properties of the graph through
color coding, such as impact and interconnectedness
The product shall allow for the exploration of the graph via click or touch
The product shall display the ability to search the graph in the user interface
The product shall maintain an immutable search history easily accessible to the
user for reuse of search terms
The product shall display to the user when it is processing a user’s search query

Nonfunctional Requirements

@)

The product shall be able to process, visualize parts of, and analyze graph files
with sizes up to 32GB

The product shall not crash or lose connection to the REST service while in use
The product shall not have any memory leaks or any loss of graph data.

The product shall not voluntarily or involuntarily modify the graph data.

Front End Specifications

Important Objects:
® Graph
O An object holding a set of Nodes and Edges, and a graph name property
® Node
O An object that holds a list of properties describing itself
O Has a set of Edges
® Edge
O An object that describes two Nodes it connects
® Selected Node
O The Node in the Graph that has been selected from the visualization via
click
® Search Query
O Contains a graph name, and two optional properties Node name and
n-degrees connections

Modules:
® Graph Panel
O Takes up most of the UI display, placed to the left of the Search Utility
and Node Properties panels. Contains a Graph object.
O Vis.js renders the graph model from the Graph and properties received
from the Handler to the screen
O Vis.js allows graph nodes to be clickable (setting the Selected Node), and
information on the Selected Node is displayed in the Node Properties
Panel
® Search Utility Panel
O Placed at the top right of the UI display, above the Node Properties Panel
O Search for a graph by graph name.
B A new Search Query object is created and passed to the Graph
Search Handler
m Optional Node name and n-degrees connections parameters
can be provided
m If graph name is blank and there is already a graph being
displayed, the currently displayed graph’s graph name will be
provided as the parameter. If a graph is not being displayed, the
UI will deny the search query and request a graph name.

http://visjs.org/

® Node Properties Panel
O Placed on the right of the UI display, below the Search Utility Panel.
O Displays all the information of a Selected Node from the Graph Panel
(selection by clicking), otherwise is empty.
® Graph Data Handler
O Receives graph data from the server via a WebSocket connection, and
transfers the data to a Graph object that is visualized through the Graph
Panel
® Graph Search Handler
O Receives a Search Query from the Search Utility
O Sends the query out to the server
m A new Graph will be returned to the Graph Data Handler based on
the parameters provided.

Back End APT

Class Listing:
Websocket Server
Handler (and subclasses)
REST Server

Class Details:

Websocket Server:
Contains two parts. One part will handle the connection [e.x.,
handleConn(scope WebSocket sock)]. The other part will start the server
[e.x., startServer()].

Handler:

Is a base abstract class that handler subclasses will extend with the

types of requests, [i.e., assigning a session ID].

Examples of base classes that will extend handler include:
SessionIDHandler - Assigns client unique session ID
ListGraphHandler - Returns list of all graphs in db
GetGraphHandler - Return graph by name

Accepts graph name string

GetGraphFromNodeHandler - Return the graph around the node
(within reason)
Accepts a node

GetGraphFromNodeNDegreeHandler - Return a graph comprised
of the nodes of degree N around the specified node.
Accepts a node, a number representing the degree

REST Server:
Contains logic to scan a folder for new files and if a new item is found,
calls
Neo4] with the file location for input in order to store the file contents in
the database.

Graph File

Concepl Skelch

Servar
REST Service DB/File
|__Store Graph g,
REST
Graph Processing
WebSocket
Web Client
hd
Grapgh Paneal Graph Data Handlar
Visualize
-—
Mode Propearties Paneal
I Display clicked node -

Search Wility Pansal

Graph Search Handlar

Process Search Query

Figure A. Concept Sketch

Interface Description
Further negotiation with Workiva is required for what they expect for a user interface,
but for now, we have come up with our own user interface.

The UI displays the graph panel on the left side of the screen, taking up the majority of
the display. The graph panel displays the visualization of the graph, with each Node
being clickable by the user. The right side of the screen has a Search Utility panel on
the top right, and below it, the Node Properties panel. When a user clicks on a Node,
its properties are displayed in the Node Properties panel. When the user typesin a
search query in the Search Utility panel, a new graph is displayed reflecting the user’s
input.

Testing Specifications
Backend Testing Specifications:
1. All packages, classes, and functions will be unit tested.
2. Web Socket connections will be tested via a dummy client.

3. Class mocking will be performed for easier testing using a more elaborate
testing library located here: https://github.com/nomad-software/dunit

Frontend Testing Specifications:
1. All objects and modules will be unit tested with the built-in Angular]S testing
framework.
2. Integration testing with the server will be done with use case testing, such as
search querying and graph displaying.

https://github.com/nomad-software/dunit

Test Plan

Requirement

Validation Test

The product shall allow for the upload of
arbitrary graph files for analysis via REST

Upload sample graph files

The product shall index incoming information
associated with nodes and edges

Store the information in the database, assert it
against the expected outcome

The product shall allow for the searching of
nodes by name

Query the name row in the database and confirm
it against the search results

The product shall process the graph to
determine:

m Depth

B Breadth

m Interconnectedness

m Impact

Unit tests based on these various qualities of
graphs

The product shall be able to visualize the graph

m The graph's visualization shall clearly
distinguish different nodes and their
connections

m The visualization shall clearly distinguish
properties of the graph through color
coding, such as impact and
interconnectedness

This will all be validated with visual confirmation
tests

The product shall allow for the exploration of the
graph

Interactive testing by the way of attempting to
explore the graph

The product shall display the ability to search the
graph in the user interface

Visual confirmation of the search dialog

The product shall allow for exploration of the
graph via click or touch interface

Click/touch the visualization in various states

The product shall maintain an immutable search
history easily accessible to the user for reuse of
search terms

Attempt to change the search history, shouldn’t
be able to

The product shall display to the user when it is
processing a user's search query

Visual confirmation test

Table 2: Test Plan

Al T2 RISKS. . 3
Figure A. Concept SKEtCh.o 7
Table 2 TSt PlaN. .o 9

10

