May1618
Advisor: Dr. Mitra

Graphalyzer

Client: Workiva
Design Document Final Version

Andrew Bowler, Alberto Gomez-Estrada, Michael Sgroi, Richard White, Taylor Welter
October 19, 2015

Table of Contents

1. INEFOAUCTION ettt bbbt eb s b sne e 2
1.7 TAM ROIBS... ottt sttt sb et e e e sbeens 2
1.2 Problem State@ment.........coeviriniiececeeeeee sttt 2

2. SYStEM LEVEI DESIZN..uicuiiiiiieierieceeiesieete sttt st e et sttt s saeste e essesbeesaesaeesaeneas 2
2.1 REQUITBIMENTS....ciiiieieeieeteeteee ettt ettt e b b e be e b e b e e sabesasesanesane 2
2.2 CONECEPE SKBLCN....iiieieteeeeeee ettt s 4
2.3 Front End Design SpeCifiCation.......ccovivirinininenieneieneeeeseee s
2.4 BACK ENA APttt ettt

3. INterface and TESTING.....coveiiririeiereetee ettt e et sbesaeenaesaees 7
3.1 INterface DeSCriPLiON...civ ittt sbe b e 7
3.2 Testing SPeCifiCatioNS.......cuvirivininiineeeee s 7
3.3 TS PlaN. ittt 8

4. Implementation Issues and Challenges..........ccooveeviniriiieneniececeeeeeeeens

1. Introduction

1.1. Team Roles

1.1.1. Andrew Bowler - Webmaster

1.1.2. Alberto Gomez-Estrada - Communications
1.1.3. Michael Sgroi - Key Concept Holder

1.1.4. Taylor Welter - Team Leader

1.1.5. Richard White - Key Concept Holder

1.2. Problem Statement

Graphs are an elegant way to illustrate the extensive web of connections
between many points of data. As the data set becomes larger and more
complex, it becomes more important to be able to visualize specific instances of
various relationships. The goal of this project is to build a generic graph
visualization, analysis, and search web application.

2. System Level Design

The project shall be set up as a client-server model. The client (aka frontend) shall
be a web application written in HTML and JavaScript with various libraries, with
React as the application’s front-end framework. It shall be responsible for
displaying the graphs and receiving user input. The server (aka the backend) shall
be written in Python. It shall first be responsible for accepting newly generated
graphs from various services via rest. It shall also be responsible for serving up the
graph to the frontend. It shall additionally be responsible for performing all the
graph calculations and sending the results to the client. Communication between
the server and client shall use websockets sending JSON messages.

2.1. Requirements

2.1.1. Backend Functional Requirements
e The product shall allow for the upload of arbitrary graph files for analysis
via REST
e The product shall index incoming information associated with nodes and
edges
The product shall allow for the searching of nodes by name
e The product shall process the graph to determine:
o Depth
o Breadth

2.1.2.

2.1.3.

o Interconnectedness
o Impact

Frontend Functional Requirements
The product shall be able to visualize the graph
The graph's visualization shall clearly distinguish different nodes and their
connections
The visualization shall clearly distinguish properties of the graph through
color coding, such as impact and interconnectedness
The product shall allow for the exploration of the graph via click or touch
The product shall display the ability to search the graph in the user
interface
The product shall maintain an immutable search history easily accessible
to the user for reuse of search terms
The product shall display to the user when it is processing a user’s search

query

Nonfunctional Requirements
The product shall be able to process, visualize parts of, and analyze graph
files with sizes up to 32GB.
The product shall not crash or lose connection to the REST service while in
use
The product shall not have any memory leaks or any loss of graph data.
The product shall not voluntarily or involuntarily modify the graph data.

2.2. Concept Sketch

Graph File

Servar
REST Service DB/File
|__Store Graph |
REST
Graph Processing
WebSockeat
Web Client
v
Graph Panal Graph Data Handlar
WVisualize
I N
Mode Propartias Fanel
I Display clicked node -

Search Ltility Panal

Graph Search Handlar

Process Search Query

Figure A. Concept Sketch

2.3. Front End Design Specification

2.3.1. Important Objects:
e Graph
o An object holding a set of Nodes and Edges, and a graph name
property
e Node
o An object that holds a list of properties describing itself
o Has a set of Edges
e Edge
o An object that describes two Nodes it connects
e Selected Node
o The Node in the Graph that has been selected from the visualization
via click
e Search Query
o Contains a graph name, and two optional properties Node name and
n-degrees connections

2.3.2. Modules:
e Graph Panel
o Takes up most of the Ul display, placed to the left of the Search Utility
and Node Properties panels. Contains a Graph object.
o Vis.js renders the graph model from the Graph and properties
received from the Handler to the screen
o Vis.js allows graph nodes to be clickable (setting the Selected Node),
and information on the Selected Node is displayed in the Node
Properties Panel
e Search Utility Panel
o Placed at the top right of the Ul display, above the Node Properties
Panel
o Search for a graph by graph name.
B A new Search Query object is created and passed to the Graph
Search Handler
B Optional Node name and n-degrees connections parameters
can be provided
B If graph name is blank and there is already a graph being
displayed, the currently displayed graph’s graph name will be
provided as the parameter. If a graph is not being displayed, the
Ul will deny the search query and request a graph name.

http://visjs.org/

e Node Properties Panel
o Placed on the right of the Ul display, below the Search Utility Panel.
o Displays all the information of a Selected Node from the Graph Panel
(selection by clicking), otherwise is empty.
e Graph Data Handler
o Receives graph data from the server via a WebSocket connection, and
transfers the data to a Graph object that is visualized through the
Graph Panel
e Graph Search Handler
o Receives a Search Query from the Search Utility
o Sends the query out to the server
B A new Graph will be returned to the Graph Data Handler based
on the parameters provided.

2.4. Back End API

Class Listing:
Websocket Server
Handler (and subclasses)
REST Server

Class Details:

Websocket Server:
Contains two parts. One part will handle the connection. The other part will
start the server.

Handler:
Is a base abstract class that handler subclasses will extend with the types of
requests, [i.e., assigning a session ID].

Examples of base classes that will extend handler include:
SessionIDHandler
Assigns client unique session ID
ListGraphHandler
Returns list of all graphs in db
GetGraphHandler
Return graph by name, accepts graph name string

GetGraphFromNodeHandler
Return the graph around the node (within reason), accepts a
node

GetGraphFromNodeNDegreeHandler
Return a graph comprised of the nodes of degree N around the
specified node. Accepts a node, a number representing the
degree

REST Server:
Contains logic to scan a folder for new files and if a new item is found, calls
Neo4] with the file location for input in order to store the file contents in the
database.

3. Interface and Testing
3.1. Interface Description

Further negotiation with Workiva is required for what they expect for a user
interface, but for now, we have come up with our own user interface.

The Ul displays the graph panel on the left side of the screen, taking up the
majority of the display. The graph panel displays the visualization of the graph,
with each Node being clickable by the user. The right side of the screen has a
Search Utility panel on the top right, and below it, the Node Properties panel.
When a user clicks on a Node, its properties are displayed in the Node Properties
panel. When the user types in a search query in the Search Utility panel, a new
graph is displayed reflecting the user's input.

3.2. Testing Specifications

Backend Testing Specifications:

1. All packages, classes, and functions will be unit tested.

2. Web Socket connections will be tested via a dummy client.

3. Class mocking will be performed for easier testing using a more elaborate
testing library located here: https://github.com/nomad-software/dunit

Frontend Testing Specifications:

1. We will be using Jest for React unit testing.

2. Integration testing with the server will be done with use case testing, such as
search querying and graph displaying.

https://github.com/nomad-software/dunit

3.3. Test Plan

Requirement

Validation Test

The product shall allow for the upload of
arbitrary graph files for analysis via REST

Upload sample graph files

The product shall index incoming
information associated with nodes and
edges

Store the information in the database, assert it
against the expected outcome

The product shall allow for the searching of
nodes by name

Query the name row in the database and
confirm it against the search results

The product shall process the graph to
determine:

B Depth

B Breadth

B Interconnectedness

B Impact

Unit tests based on these various qualities of
graphs

The product shall be able to visualize the graph

The graph'’s visualization shall clearly distinguish
different nodes and their connections

The visualization shall clearly distinguish
properties of the graph through color coding,
such as impact and interconnectedness

These will all be validated with visual
confirmation tests

The product shall allow for the exploration
of the graph

Interactive testing by the way of attempting to
explore the graph

The product shall display the ability to
search the graph in the user interface

Visual confirmation of the search dialog

The product shall allow for exploration of
the graph via click or touch interface

Click/touch the visualization in various states

The product shall maintain an immutable
search history easily accessible to the user
for reuse of search terms

Attempt to change the search history, shouldn't
be able to

The product shall display to the user when
it is processing a user's search query

Visual confirmation test

Table 1: Test Plan

4. Implementation Issues and Challenges

4.1. Scalability

With a maximum input file size of 32GB, the scale of the operations the
system has to perform is a major concern. If proper procedures are not
followed, there is always the chance that our system will not be able to
handle larger file sizes and more complex computations. This would impair
the proper functioning of the system and would limit its usability and
practicality. To attempt to mitigate this risk, we will design the project to only
load relevant sections of a graph at a time. In addition, the frontend will only
display a certain amount of nodes/edges.

4.2. Technology Support

Many of the technologies used in this project are fairly new, and thus could
be poorly documented or lead to uncharted waters situations where a
solution may not very applicable to an existing one in the language in
question. To mitigate this risk, we have decided to extensively study up on
the languages in each of our respective domains.

4.3. Backend Language

We had originally decided to use D programming language to program the
backend. This, however, proved troublesome due to REST communication
troubleshooting problems and general lack of support. Debugging the REST
communication in D was problematic since there was little documentation or
examples to base our REST communications off of. We resolved this issue by
switching to Python. This change wasn’t a huge time investment since we did
it earlier in the project. It proved to be an incredibly beneficial change since
Python has more documentation and active library support for Neo4.

4.4. Frontend Framework

Originally, we were using Angular.js as the framework for the frontend, but
not enough of us were familiar enough with it for it to be any more than a
hinderance due to its strict nature. We decided we needed something that
would allow us to more freely use traditional HTML elements alongside the
features that a JavaScript framework provides. We ultimately decided on
React.js. The change to it was pretty smooth and we were back to where we
were prior to the change within a week or so.

Appendix

Figure A. CONCEPT SKETCN...c.uiiiieieieeeeee et 4

Table 1: Test Plan

10

