Graphalyzer

A graph visualization and analysis tool Team May1618 / Workiva

Team Members:

- Andrew Bowler Webmaster
- Alberto Gomez-Estrada Communications Lead
- Michael Sgroi Key Concept Holder
- Richard White Key Concept Holder
- Taylor Welter Project Lead
- Dr. Simanta Mitra Advisor
- Ross Hendrickson Client

Problem - Big Data

- Companies constantly dealing with Big Data
 - Social media
 - Employee directories
 - Documents on a server
 - Etc...
- How can we understand Big Data? What does it mean?

Solution - Graphs

- Graphs are a helpful way to represent Big Data
 - Structural behavior
 - Relationships
 - Key properties or members of high impact

Looking at data in tables

- Difficult to see or find patterns
- Requires you to join many tables
 - High performance cost
- Example: Sales
 - You have a tables for salesmen, customers, orders, and items
 - Not joined
 - Impossible to see any patterns
 - Joined
 - Hard to see patterns in giant lists
 - High performance cost

propertyid	type	value
1ff4fe97abd0457eafe5cbf7d5f1fabd	time	2015-10-02 19:39:09.019662
ac15fc7f94cd4b369aafcefc2f7f5156	user id	964
2156c93d430f4ef9bd92fefa10dc828f	time	2015-10-02 19:39:09.023733
979a73cb7ae0434287e1e6ba13e5ed	time	2015-10-02 19:39:09.024886
7cab5720bd014420a37f490e0eecbc	user id	3041
a94a40bc51b54252854f2fc453ca2a9	user id	1184
2264cf3085254bd8b5ad3b1e07ca4a	time	2015-10-02 19:39:09.021136
7f26013ae5af4539bd8924441d7e28	user id	1570
0e108b7bca2940b9bf15d39f950e6ed	time	2015-10-02 19:39:09.025176
9ea02e313bb94a429292d1a6d2789f	user id	87
827b4e4c41f9413dab12ced8869b61	user id	376
221c9d4900ab4bbbaace3e4e6d7ad4	user id	1464
c898cdceb24447498106d7f5ebaa80	time	2015-10-02 19:39:09.019414
c0fc75aae5dd4e7b8cb50f505b21c3#	time	2015-10-02 19:39:09.026198
8ea3eecbe15e46f387ef60bf0df7167	user id	2638
812c53ff86994649bf01a9d9d7186ee	time	2015-1002 19:39:09.026139
7876cfe05d45420b84a49205253d72	time	2015-10-02 19:39:09.022939
7cab5720bd014420a37f490e0eecbc	time	2015-10-02 19:39:09.026018
4d2ae8e0270f446d82a919ea19b81d	time	2015-10-02 19:39:09.024763
31d9581d2de74eda81920eb8706c70	time	2015-10-02 19:39:09.021625
ddacd041275247798555856c010dff1	user id	2242
ee5497c588914799879c55c514f585	time	2015-10-02 19:39:09.022700
cd3198dfb9bf4cd1b731193b3274314	time	2015-10-02 19:39:09.020048
63490b6d23604fb08f4c4799ba189e#	time	2015-10-02 19:39:09.025957
0e108b7bca2940b9bf15d39f950e6ed	user_id	1755
5367c6f0b6714828b547248b949472	time	2015-10-02 19:39:09.019226
350f21c3088b4901869415235a83b2	time	2015-10-02 19:39:09.024164
6a0e25e570b6402bb911b41390b720	time	2015-10-02 19:39:09.021869
3c9c8da25cff4f9e8969877e92ddafbf	time	2015-10-02 19:39:09.021748
8a27844df76d407e8aff9b7b0a1f9f57	user_id	378
434115e7969e47169496ffd481fcf23f	user id	2504
827b4e4c41f9413dab12ced8869b61	time	2015-10-02 19:39:09.021809
eacacb0027b745f9a9e3e5d56e4ded	time	2015-10-02 19:39:09.024517
f1f2d5727c2c4a6c8d201f174671518	time	2015-10-02 19:39:09.026382
0291a572d9ca47e782917f9fea9f6a4	user_id	943
983939bc5371415783bbf8164b56ea	user_id	2241
b2a3fc13f358484aa0478bc8504756	user_id	2968
9edd637d5f24491890db8e2626733a	time	2015-10-02 19:39:09.022513
0748a80de82c4aa48405f993181bbe	time	2015-10-02 19:39:09.023440
	1.4	

Looking at data in graphs

- Easy to see patterns
- Minimal performance cost
- Example: Sales
 - Each salesmen, customer, order, item is a node
 - Relationships are expressed as edges

Goals of Graphalyzer - Visualization

- Present a visualization of graphical data to the user through an Internet browser
 - Context of data is arbitrary, serve as a tool for any graph data
 - Display graph through intuitive interface - use shapes and colors

Goals of Graphalyzer - Analysis

- Allow user to specify parameters for visualization
 - Filtering and highlighting nodes by properties
 - Search for and focus in on nodes, display their properties

Goals of Graphalyzer - Performance

- Handle large data
 - Size of data can range from very small to many gigabytes
 - Hundreds of nodes or edges to millions of nodes or edges

Technical Challenge #1 - Uncharted Waters

- Working with new technologies
 - Angular and D
 - Server administration
- **Solution:** Don't reinvent the wheel
 - Use familiar tools to get the job done
 - Follow Workiva's advice

Technology Stack

- Graph Libraries
 - Vis.js
 - o neo4j
- Workiva Stack
 - React.js
 - Python
- REST service
- Ubuntu Web Server

• This project is expected to continue under Workiva

 Keep code organized and familiar with style guidelines, so work can continue

Technological Challenge #2 - Implementing a test plan

- We planned on using Jest, the testing framework bundled with React.js and based on JUnit
 - Our implementation encountered issues when running Jest.
- Testing front-end and back-end simultaneously presented issues on TravisCl
 - Our Python server filters all IP Addresses except those within a range determined by Workiva.
- Solutions:
 - Using Jest and PyUnit to test both the front and back-ends.
 - For the sake of the project, we only unit tested, since the server is not reachable.

Test Plan

- Using Jest:
 - Validate rendering of Javascript objects
 - Verify that the React components maintain a consistent state and manipulate their data as expected
 - Validate requests and response to Python server
- Goals
 - Ensure maintainability of code, keeping in mind that our software may be used by Workiva in the future

Technological Challenge #3 - Scalability and Performance

• Be able to visualize data that could be gigabytes in size

• Maximize scalability and performance, minimize impact to user interactivity

Technological Challenge #3 - Solutions

- Solutions:
 - Stream the data query data from neo4j and send previously received data to the client simultaneously in chunks.
 - Do graph processing server-side as much as possible
 - Reduces loads on browser, CPU, and GPU
 - Visualize only what the user wants
 - Draw subgraphs up to the user
- The provided server has very limited disk space and RAM, so we can only store a few hundred megabyte sized graphs

Filtering

- Lots of data, need to find certain entries
 - May have properties with values
 - **Example:** find all people on payroll with a salary greater than a certain value
- Graphalyzer provides users with customizable options
- Highlight nodes that pass filter test, grey out all others

https://youtu.be/P5A3UxZwodU

Searching

- Important node exists somewhere within giant graph
 - Find it, and display all of its properties to the user
 - **Example:** Find a CEO of a company with more than 10,000 employees and display all of that person's information in the graph's data
- Graphalyzer makes this easy by zooming into the node and listing all of its properties

https://www.youtube.com/watch?v=ArWq8q4BD04&feature=youtu.be

Subgraphs

- Often times the user does not need to see the entire graph, but only a part of it
- The graph could have thousands of nodes and edges the user doesn't care about
 - Example: Given a name of a person on Twitter, display all of their followers and people they are following
- Graphalyzer only requires a source node (person in this case), and a depth of connectivity (incoming and outgoing)

https://www.youtube.com/watch?v=hqfuVaon-54&feature=youtu.be

Sharing Your Graph Analysis Results

- Graph analysis can often be done collaboratively
- Graphalyzer allows users to export a custom web URL and share it with others
 - Copied to clipboard, paste it in an email, group chat, etc.
 - Paste the URL in the browser on another computer
 - Watch it go
- In addition, you can save your visualization as a PNG image
 - HTML5 Canvas makes this trivial

Achievements

• Visualization and Analysis:

- Subgraphs
- Filtering
- Searching
- Listing properties

• File Handling and Performance:

- Folder uploads
- REST service
- Tested to handle many thousands of nodes and edges

• Other Achievements:

- Dedicated Amazon Web Server with deployed code
- Unit testing suite with continuous integration
- URL Exporting for sharing analysis
- Open source GitHub repository

