
Graphalyzer
A graph visualization and 

analysis tool
Team May1618 / Workiva



May1618
Team Members:

● Andrew Bowler - Webmaster

● Alberto Gomez-Estrada - Communications Lead

● Michael Sgroi - Key Concept Holder

● Richard White - Key Concept Holder

● Taylor Welter - Project Lead

● Dr. Simanta Mitra - Advisor

● Ross Hendrickson - Client



Problem - Big Data

● Companies constantly dealing with Big Data
○ Social media

○ Employee directories

○ Documents on a server

○ Etc...

● How can we understand Big Data? What does it mean?



Solution - Graphs

● Graphs are a helpful way to represent Big Data

○ Structural behavior

○ Relationships

○ Key properties or members of high impact



Looking at data in tables
● Difficult to see or find patterns

● Requires you to join many tables

○ High performance cost

● Example: Sales

○ You have a tables for salesmen, customers, 
orders, and items

■ Not joined 

● Impossible to see any patterns

■ Joined

● Hard to see patterns in giant lists

● High performance cost



Looking at data in graphs
● Easy to see patterns

● Minimal performance cost

● Example: Sales

○ Each salesmen, customer, order, 
item is a node

○ Relationships are expressed as edges



Goals of Graphalyzer - Visualization

● Present a visualization of 
graphical data to the user 
through an Internet browser

○ Context of data is arbitrary, 
serve as a tool for any graph 
data

○ Display graph through 
intuitive interface - use 
shapes and colors



Goals of Graphalyzer - Analysis
● Allow user to specify 

parameters for 
visualization

○ Filtering and 
highlighting nodes by 
properties

○ Search for and focus in 
on nodes, display their 
properties



Goals of Graphalyzer - Performance

● Handle large data

○ Size of data can range from very small to 
many gigabytes

○ Hundreds of nodes or edges to millions of 
nodes or edges



Technical Challenge #1 - Uncharted Waters
● Working with new technologies

○ Angular and D

○ Server administration

● Solution: Don’t reinvent the wheel
○ Use familiar tools to get the job done

○ Follow Workiva’s advice



Technology Stack
● Graph Libraries

○ Vis.js

○ neo4j

● Workiva Stack

○ React.js

○ Python

● REST service

● Ubuntu Web Server

● This project is expected to 
continue under Workiva

● Keep code organized and 
familiar with style guidelines, 
so work can continue



Design



Technological Challenge #2 - Implementing a test plan
● We planned on using Jest, the testing framework bundled with React.js and based 

on JUnit
○ Our implementation encountered issues when running Jest.

● Testing front-end and back-end simultaneously presented issues on TravisCI
○ Our Python server filters all IP Addresses except those within a range determined by 

Workiva.

● Solutions:
○ Using Jest and PyUnit to test both the front and back-ends.

○ For the sake of the project, we only unit tested, since the server is not reachable.



Test Plan
● Using Jest:

○ Validate rendering of Javascript objects

○ Verify that the React components maintain a consistent state and manipulate 
their data as expected

○ Validate requests and response to Python server

● Goals

○ Ensure maintainability of code, keeping in mind that our software may be 
used by Workiva in the future



● Be able to visualize data that could be 
gigabytes in size

● Maximize scalability and performance, 
minimize impact to user interactivity

Technological Challenge #3 - Scalability and Performance



Technological Challenge #3 - Solutions
● Solutions:

○ Stream the data - query data from neo4j and send previously 
received data to the client simultaneously in chunks. 

○ Do graph processing server-side as much as possible

■ Reduces loads on browser, CPU, and GPU

○ Visualize only what the user wants

■ Draw subgraphs - up to the user

● The provided server has very limited disk space and RAM, so we 
can only store a few hundred megabyte sized graphs



Filtering

● Lots of data, need to find certain entries
○ May have properties with values

○ Example: find all people on payroll with a salary greater than 
a certain value

● Graphalyzer provides users with customizable options

● Highlight nodes that pass filter test, grey out all others



https://youtu.be/P5A3UxZwodU



Searching
● Important node exists somewhere within giant graph

○ Find it, and display all of its properties to the user

○ Example: Find a CEO of a company with more than 10,000 
employees and display all of that person’s information in the 
graph’s data

● Graphalyzer makes this easy by zooming into the node 
and listing all of its properties



https://www.youtube.com/watch?v=ArWq8q4BD04&feature=youtu.be



Subgraphs
● Often times the user does not need to see the entire graph, but 

only a part of it

● The graph could have thousands of nodes and edges the user 
doesn’t care about

○ Example: Given a name of a person on Twitter, display all 
of their followers and people they are following

● Graphalyzer only requires a source node (person in this case), and 
a depth of connectivity (incoming and outgoing)



https://www.youtube.com/watch?v=hqfuVaon-54&feature=youtu.be



Sharing Your Graph Analysis Results
● Graph analysis can often be done collaboratively

● Graphalyzer allows users to export a custom web URL and share it 
with others
○ Copied to clipboard, paste it in an email, group chat, etc.

○ Paste the URL in the browser on another computer

○ Watch it go

● In addition, you can save your visualization as a PNG image

○ HTML5 Canvas makes this trivial



Achievements
● Visualization and Analysis:

○ Subgraphs
○ Filtering
○ Searching
○ Listing properties

● File Handling and Performance:
○ Folder uploads
○ REST service
○ Tested to handle many thousands of nodes and edges

● Other Achievements:
○ Dedicated Amazon Web Server with deployed code
○ Unit testing suite with continuous integration
○ URL Exporting for sharing analysis
○ Open source GitHub repository



Questions


