
Graphalyzer:
A graph visualization and analysis tool

May1618

1



May1618
Team Members:

● Andrew Bowler

○ SE

○ Webmaster

● Alberto Gomez-Estrada 

○ CPR E

○ Communications

● Richard White

○ SE

○ Key Concept Holder

2

● Michael Sgroi

○ CPR E

○ Key Concept Holder

● Taylor Welter

○ SE

○ Team Leader

● Client: Workiva

● Advisor: Dr. Simanta Mitra



Problem Statement
● Create a web application that visualizes Big Data into an 

interactive graph

○ Nature of data is arbitrary

● Perform graphical analysis on data

○ Depth, breadth, interconnectedness 

3



Goals of Graphalyzer
● Simplify data analytics through interactivity

○ Make it easy and intuitive to distinguish important 

relationships

○ Use basic visual attributes such as color and shapes

● Keep everything general

○ Be able to perform said analysis on any type of data

○ Eg. Payroll system for a large company

4



Backend Functional Requirements
● Upload graph files of arbitrary data via REST

● Index incoming information associated with nodes and edges

● Allow for searching of individual nodes by name

● Process graphical analysis

○ Depth

○ Breadth

○ Interconnectedness

○ Impact

5



Frontend Functional Requirements
● Display graphical visualization of data to the user such that:

○ Nodes and edges are clearly distinguishable

○ Graphical analysis (depth, impact, etc.) is intuitively displayed by color and 

shape

● Provide an interactive interface for the graph

○ Select nodes to display the node’s data

○ Pan around the graph to explore the data

○ Display to the user when data is being processed

6



Non-functional Requirements
● Maintain data integrity (no modifications)

● Process and visualize data over 32GB in size

● (Obviously) don’t crash

7



8



Backend Specifications and Design
● Receive graph csv file via REST

○ Data is then parsed and loaded into neo4j

● Websocket server

○ Handles various requests

○ Requests and responses are in JSON format

● Neo4j

○ DB that holds edges, nodes, and properties

9



Frontend Specifications and Design
● Graph Panel

○ Display graphical visualization of data

○ Allow user interaction with the graph

● Search Utility Panel

○ Select data from the server to visualize

○ Search within a graph for specific data or neighborhoods

● Node Properties Panel

○ Display information on a node selected by the user

10



Tech Stack
● Python

○ Server language for interfacing with Neo4J, graph file uploading, and UI communication

● React.js

○ JavaScript framework used for writing the user interface

● Vis.js

○ JavaScript graph visualization library that provides an interactive graph, given a dataset

● Neo4J

○ Used for graph storage and handling

11



Work Breakdown
● Agile practices

○ Three, two week sprints

○ Trello

● Git

○ Feature branches for new development

○ Pull requests with team code reviews

12



Fall 2015 Milestones
● September

○ Gather requirements and project information

○ Establish communication with client

● October

○ Research relevant technologies

○ Begin prototype implementation

● November

○ Complete prototype for first semester

13



Current Progress
● First iteration of user interface complete

○ Visualization of a small graph ~(100 nodes, 450 edges)

○ Graph selected by providing data name in the Search Panel

○ Basic user interaction such as node selection, with data displayed in the Node 

Properties Panel

● FTP data file upload to server

14



Individual Contributions
● Backend Team

○ Michael

■ Created automatic file upload 

service to submit files to Neo4J.

○ Richard

■ Wrote backend handlers for 

frontend requests.

■ Communication with Neo4j.

15

● Frontend Team

○ Alberto

○ Andrew

○ Taylor

● Graph Panel, Search Panel, and 

Node Properties Panel

● Graph Visualization through Vis.js



Challenges
● Tech stack

○ Everything was new technology to the team

○ Switched from Angular to React

○ Switched from D to Python

○ New techs reflect what Workiva commonly uses, anyway

● Scalability

○ Large data sizes

○ How to improve performance without sacrificing interactivity

16



Next Steps
● Gather performance metrics based on graph size

○ Calculated estimated 17% increase in data size from CSV to JSON graph data

○ Improve data transmission for much larger data sizes

● User Experience feedback for UI improvement

○ Search Panel becomes a file selector instead of pure search

● Visual graphical analysis

17


