May1618

Graphalyzer

A Graph Visualization and Analysis Tool

Team:

Andrew Bowler - Webmaster

Alberto Gomez-Estrada - Communications
Michael Sgroi - Key Concept Handler
Taylor Welter - Team Lead

Richard White - Key Concept Handler
Advisor: Simanta Mitra

Client: Workiva

Project Plan Final Version

Table of Contents

~

. Problem Statement
. Similar Products
CREQUITEMENTS. 2

. Concept Sketch
. Project Schedule

. Development
. Feasibility

3.1. User Requirements
3.2. System Requirements
3.3. Backend Functional Requirements
3.4. Frontend Functional Requirements
3.5. Backend Nonfunctional Requirements
3.6. Frontend Nonfunctional Requirements
3.7. Minimal Viable Product
3.8. Interface DeSCriPLioN. 4

5.1. Work Breakdown
B2, GaANtt Calt . e, 6
5.3. Meetings

1. Problem Statement

Graphs are an elegant way to illustrate the extensive web of connections between
many points of data. As the data set becomes larger and more complex, it becomes
more important to be able to visualize specific instances of various relationships, and
performance may suffer as this grows larger. The goal of this project is to build a fast,
generic graph visualization and analysis web application.

2. Similar Products

Graphalyzer is intended as a successor to an existing Workiva tool, so Graphalyzer's
purpose is to provide the functionality of the previous tool, but circumvent the
drawbacks from before. Workiva’s previous tool used D3, a JavaScript library for
visualizing document. One of Workiva's requirements is to be able to visualize and
analyze very large graph files. The problem with the previous tool is that it was
very slow, and lacked specific analysis features, and the technology stack involved
was more built for data files as a whole, not just graph files. Graphalyzer is built for
graph files only, and one of its main goals is to drastically improve performance for
visualization and analysis.

3. Requirements

3.1. User Requirements

The web application must be able to facilitate the analysis of large volumes of data, as
well as extracting fragments of data that are most relevant to a client, according to
their needs. The web application must be easily accessible to the client, and be fast
and efficient. Lastly, because of the volumes of data and the potential for critical data
to be analyzed using the application, the application must be thoroughly tested and
free of fatal error or complications.

3.2. System Requirements
The web application must be deployed on a Linux virtual machine that can be
remotely accessed by clients and other users. The application must also process and

index large volumes of data efficiently and accurately. The technologies used shall
preferably be compatible with technology that is currently in use at Workiva.

3.3. Backend Functional Requirements

3.3.1. The product shall allow for the upload of arbitrary graph files for analysis via
REST

3.3.2. The product shall index incoming information associated with nodes and
edges

3.3.3. The product shall allow for the searching of nodes by name

3.3.4. The product shall process the graph to determine:
e Depth
e Breadth
e Interconnectedness
e Impact

3.4. Frontend Functional Requirements
3.4.1. The product shall be able to visualize the graph such that:
e The graph’s visualization shall clearly distinguish different nodes and
their connections
e The visualization shall clearly distinguish properties of the graph through
color coding, such as impact and interconnectedness
3.4.2. The product shall allow for the exploration of the graph via click or touch
3.4.3. The product shall display the ability to search the graph in the user interface
3.4.4. The product shall maintain an immutable search history easily accessible to
the user for reuse of search terms
3.4.5. The product shall display to the user when it is processing a user’s search

query

3.5. Backend Nonfunctional Requirements
3.5.1. The product shall be able to handle a large number of nodes (upper bound
TBD) without crashing or hanging
3.5.2. The product shall support different file upload protocols (e.g. REST, FTP, etc.)
3.5.3. The product shall maintain original graph data integrity

3.6. Frontend Nonfunctional Requirements

3.6.1. The product shall be able to process, visualize parts of, and analyze graph
files with sizes up to 32GB

3.6.2. The product shall not crash or lose connection to the REST service while in
use

3.6.3. The product shall not have any memory leaks or any loss of graph data.

3.6.4. The product shall not voluntarily or involuntarily modify the graph data.

3.7. Minimal Viable Product

At minimum, our web application must be able to display an abstraction of the graph
that maintains key information, such as interconnectedness, depth, and impact. The
user shall be able to perform cursory searches and store those searches. Finally,
search operations performed on the graph shall be stored in an immutable database
for security.

The product’s most initial development version is estimated for demo around Week 12
of the semester, and the MVP is estimated to be demoed around Week 15 of the
semester. During this time period, work will be done in 2-week sprints.

3.8. Interface Description
Graphalyzer’s interface shall be a web browser client with three main components:

e Graph Panel that displays an interactive visualization of a graph, such that
interacting with nodes of the graph prompts the interface to display more
information

e Node Panel that describes information of a currently selected node from the
graph

e Search Panel that allows the user to control what is displayed in the graph
panel, such as the graph file, specific nodes, and size of breadth of connections
from a node

4. Concept Sketch

Graph File

Server
REST Service DB/File
_Store Craph |
REST -
Graph Processing
WebSocket (%]
g
@
| :
o
5]
Web Client §'
=L
i
Graph Visualization Search Utility s
Update view
-—

Figure A. Concept Sketch

5. Project Schedule

5.1. Work Breakdown

5.1.1. Sprints

The prototyping phase this semester and the implementation phases will be
developed in iterations, focusing on 2 week sprints beginning and ending on Fridays.
This will allow us to break down tasks and implement them more quickly.

In one special case, a 3 week sprint will be used from 10/19/2015-11/6/2015, to line up
the completion of the prototype by the end of Week 10 of the semester. This will allow
the team to present a live demo of the first iteration of Graphalyzer to Workiva, and
set up a launchpad for two more 2 week sprints before the 491 presentation in Week
14 and end of semester.

5.1.2. Work Management

We will be using Trello, an online project management tool with a wide spectrum of
customization available. Trello acts as a sprint board. There are three main columns:
TODO, In Progress, and Done. The board will populated with individual cards
representing tasks that need to be done at the beginning of every sprint, and Trello
will always be kept up to date on the status of each task. Each task is assigned to a
person or group of people, and it is their responsibility to complete each task before
its designated due date, which in most cases is the end of the sprint.

5.2. Gantt Chart

.]
< S—ARE 2016
pRee », T T T i T T T T
Name | Be-gin T End date September October Movember December Janusry February March April iz
© Rough Spec 8/1/15 10/28/15 1
© Prototype 10/2/15 11/13/15 /]
© MVP/Presentation 11/13/15 12/4/15 T
@ Final Regs 12/4/15 1/18/16 ||
& Core Implemented 111818 3/4/16 /]
© Integration 3/4/16 3/18/16 |
© Testing Finished 311716 3/25/16 1
@ Final Implement 3/18/18 472916 T
© Final Presentation 3/25/16 5/6/16 I

Figure B. Project Schedule

5.3. Meetings

5.3.1. Advisor Meetings

For the Fall semester, the team and Dr. Mitra will normally meet weekly, every Monday
at 3:15pm. The purpose of these meetings is to maintain focus on short-term goals, as
well as plan accordingly for long-term goals.

5.3.2. Client Meetings

For the Fall semester, the team and Workiva will normally meet weekly, every Friday at
3:30pm over Google Hangout. The main goals of these meetings is to provide status
updates on project development, obtaining and clarifying requirements, and
presenting demos of development iterations.

5.3.3. Team Meetings

The team will meet as needed, with a minimum being at least once a week. Generally,
meetings will be conducted over Google Hangout after client meetings. The goal of
these meetings is to keep everyone in the loop on progress with tasks in the currently
active sprint. Additionally, time will be set aside in meetings at the end of each sprint
to plan out the next sprint.

6. Development

6.2.1. Overview

We are using Git as our method of source control, with GitHub as a repository host.
Two project repositories will be used; Graphalyzer and graphalyzer.github.io, with
Graphalyzer being the official project repository, and graphalyzer.github.io being
the project website.

6.2.2. Git Practices

All development on Graphalyzer will be done on feature branches specific to the
feature being worked on - e.g. ‘graph-panel’ for all development on the Graph
Panel component on the frontend. When work is finished on a feature branch, a
pull request will be opened with brief, but concise documentation on the changes
represented. The pull request will be merged into the master branch only after a
code review from all members of the time. Code reviews ensure that code is
well-documented, tested, and consistent with the rest of the project. When every
team member approves the changes, the owner of the pull request may merge.

https://github.com/rwhite226/Graphalyzer
https://github.com/ajbowler/graphalyzer.github.io

/. Feasibility

Our team has extensive experience in various technologies, including different
spectrums of web development such as REST, UI design, and JavaScript, and have all
taken classes on graph theory. So over the course of 9 months, a project such as this
should be feasible. See the next section for risks.

8. Risks

Risk Probability | Criticality | Risk Factor | Risk Mitigation Strategy
of (0-100) (Occurrence
Occurrence * Criticality)
The project requires The group shall meet up
more time to frequently to establish our team
0.2 70 14 . .
develop than goals in relation to our
expected deadlines

We shall try to design the

Project is not able project to load only pieces of

teitsrceanlweeTo large 0.5 30 15 the graph at a time. Also the
ylarg frontend shall only display a
data sets

certain amount of nodes/edges

We shall tailor the project to
meet the needs and
requirements of Workiva and its
clients

Project is inferior to
existing products on 0.1 20 2
the market

The application
doesn't work
properly or bugs
prevent the
application from
working

We shall test our application
0.3 90 27 with unit tests. And try to design
the project to mitigate bugs

Backend language
has insufficient
support to do what
we need

We shall verify our needs and
0.1 80 8 check if the language supports
them

